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A condition for improved dynamic aperture for nonlinear, alternating gradient transport systems is derived
using Lie transform perturbation theory. The Lie transform perturbation method is used here to perform
averaging over fast oscillations by canonically transforming to slowly oscillating variables. This is first dem-
onstrated for a linear sinusoidal focusing system. This method is then employed to average the dynamics over
a lattice period for a nonlinear focusing system, provided by the use of higher order poles such as sextupoles
and octupoles along with alternate gradient quadrupoles. Unlike the traditional approach, the higher order
focusing is not treated as a perturbation. The Lie transform method is particularly advantageous for such a
system where the form of the Hamiltonian is complex. This is because the method exploits the property of
canonical invariance of Poisson brackets so that the change of variables is accomplished by just replacing the
old ones with the new. The analysis shows the existence of a condition in which the system is azimuthally
symmetric in the transformed, slowly oscillating frame. Such a symmetry in the time averaged frame renders
the system nearly integrable in the laboratory frame. This condition leads to reduced chaos and improved
confinement when compared to a system that is not close to integrability. Numerical calculations of single-
particle trajectories and phase space projections of the dynamic aperture performed for a lattice with quadru-
poles and sextupoles confirm that this is indeed the case.
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I. INTRODUCTION

Linear focusing systems such as the alternate gradient
quadrupole systems are relatively easy to analyze because of
the existence of the Courant-Snyder invariants[1], which
reduce the system to an uncoupled set of systems of one
degree of freedom. In the presence of higher order compo-
nents such as sextupoles or octupoles, these invariants are
destroyed. Such a system is nonintegrable and has trajecto-
ries that are chaotic and poorly confined. Despite this short-
coming in the use of nonlinear components, their use has
been proposed in a variety of applications. They include, for
example, achieving uniform particle distributions[2], control
of beam emittance growth and beam halo formation[3,4],
providing strong sextupole focusing in planar undulators in
free electron lasers[3], folding of beam phase space distri-
butions as an alternate to beam collimation[4], introducing
Landau damping by providing octupole or sextupole induced
tune spread[5,6], photoelectron trapping in quadrupole and
sextupole magnetic fields[7], etc. In addition to this sextu-
poles are widely used in storage rings for cromaticity correc-
tions. Nonlinear forces also arise as a result of beam-beam
interactions at interaction point of a storage ring collider
which limit the dynamic aperture of the system[8]. Thus, a
general analysis of the nonlinear focusing problem is impor-
tant. It is well known that a near integrable Hamiltonian
system will typically possess regular trajectories inter-
mingled with regions of chaos. The aim of this paper is to
find a condition that optimizes the integrability of the system
thereby minimizing the chaotic region in the presence of
certain nonlinear focusing components.

To perform the analysis we use the Lie transform pertur-
bation method, which exploits the invariance of the Poisson
brackets under canonical transformations. In this analysis all
dynamical variables appear within Poisson brackets, so the

whole formulation is canonically invariant. If this were not
true, one would need to express the Hamiltonian in terms of
the new variables up to the desired order before performing
the perturbation analysis. This could make the problem more
tedious when the form of the Hamiltonian is not simple, and
when it is required to carry the expansion up to third order,
both of which are true in this case. References[9–11] contain
other procedures for averaging applied to beam physics. We
follow the Lie transform method described in Ref.[12] and
show that rearranging the different order terms of the Hamil-
tonian in this method enables one to perform a time averag-
ing rather than average the motion over the trajectory de-
scribed by the integrable component of the Hamiltonian.

To start with, Sec. II provides a brief description of the
Lie transform method used in this paper. Section III presents
an illustration of the method applied to a continuous periodic
focusing system, an example also used by Channel[9]. In
Sec. IV, we introduce a nonlinear focusing system which has
a higher order multipoles in addition to quadrupoles. The
resulting Hamiltonian describing the motion transverse to the
beam propagation is nonautonomous and has two degrees of
freedom. By averaging the motion over the lattice period up
to third order, we derive a condition for the new time-
independent Hamiltonian to also be independent of the trans-
formed azimuthal variable. Under such a condition, the
transformed angular momentum will be an adiabatic invari-
ant. It will be shown that this condition is satisfied when the
functions describing the forces due to the respective multi-
pole are orthogonal to each other in a certain manner.

In order to show that the condition of azimuthal invari-
ance is a desirable one, various numerical calculations are
performed. Section V includes results which show that as
one deviates from the desired condition, the particle oscilla-
tions acquire additional frequency components and also have
larger oscillation amplitudes. Section VI illustrates the pro-
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jection of the dynamic aperture on to different planes in
phase space. The dynamic aperture is the region that allows
what may be defined as confined particles. Estimating the
dynamic aperture for different cases shows that maximum
confinement can be achieved when the associated time aver-
aged Hamiltonian is integrable in the transformed coordi-
nates and hence the system is nearly integrable in the labo-
ratory frame. The dynamic aperture is shown to gradually
diminish in size as one deviates from this condition.

II. THE LIE TRANSFORM METHOD FOR AVERAGING
OVER FAST OSCILLATIONS

In this section we outline the Hamilton perturbation
method described in Ref.[12]. This method is based on pre-
vious work[13–17] that introduced Lie transform theory as a
convenient method to perform Hamilton perturbation analy-
sis. The Lie transformation is defined with respect to a phase
space functionw such that it satisfies the following Poisson
bracket relationship:

dZ

de
= hZ,wsZsz,t,ed,t,edj, s1d

where Z =sP,Qd is a phase space vector representing the
generalized positions and momenta of the system,w is the
Lie generating function, ande is a continuously varying pa-
rameter such thatZse=0d=z, the original phase space vector.
The above relationship resembles Hamilton’s equation with
respect to a “Hamiltonian,”w and “time,” e. This guarantees
that the transformation is canonical for all values ofe.

The Lie operatorL is defined such that it performs a Pois-
son bracket operation with respect tow. Symbolically,

L = hw,j. s2d

A transformation operatorT is defined such that its role is to
replace the variables of a function by the new canonical vari-
ables. For the identity function this is simply,

Tz = Zsz,e,td. s3d

The operatorT is analogous to the “evolution” operator with
respect toe. Using Eq.s1d it can be verified thatT satisfies

dT

de
= − TL. s4d

For a similar relationship involving the inverse transforma-
tion operatorT−1, we differentiate the equationTT−1=1 and
use the above equation to obtain

dT−1

de
= T−1L. s5d

The transformed HamiltonianK can be expressed in terms of
the original HamiltonianH as

Ksed = T−1sedsHd + T−1sedE
0

e

de8Tse8d
] w

] t
se8d. s6d

This expression was obtained by Dewarf16g.

To obtain explicit equations for each perturbation term,
every physical quantity and operator is expressed as a power
series ine known as the Deprit power series[15]. The origi-
nal and transformed Hamiltonians are given byHsz,e ,td
=on=0

` enHnsz,td, Ksz,e ,td=on=0
` enKnsz,td. The Lie generat-

ing function is represented a little differently because it ap-
pears as a derivative in Eq.(6). This is, wsz,t ,ed
=on=0

` enwn+1sz,td. The operatorsT andL are represented in a
similar way asTst ,ed=on=0

` enTnstd, Lswd=on=0
` enLn, where

Ln=hwn,j, the Poisson bracket with respect town. The param-
etere is used to keep track of the terms representing different
orders in the expansion and is usually set to one in the end.

By substituting the Deprit expansions into Eqs.(4), (5),
and (6), one can obtain relationships between the corre-
sponding terms for each order ofe. Doing this for Eq.(6), we
get, up to third order,

K0 = H0, s7ad

] w1

] t
+ hw1,H0j = K1 − H1, s7bd

] w2

] t
+ hw2,H0j = 2sK2 − H2d − L1sK1 + H1d, s7cd

] w3

] t
+ hw3,H0j = 3sK3 − H3d − L1sK2 + 2H2d

− L2SK1 +
1

2
H1D −

1

2
L1

2H1. s7dd

The expression]wn/]t+hwn,H0j is the variation ofwn along
the unperturbed trajectory described byH0. Setting H0=0
reduces this to a partial derivative with respect tot. Thus,
instead of integrating along the unperturbed trajectory, we
simply perform an integration over time to determinewn. At
each order,Kn is chosen such that it cancels the terms that
average to a nonzero value over fast oscillations. As a result,
the corresponding value ofwn will have a zero average. This
is necessary to preventwn from being secular(unbounded) in
time [12].

Using Eq. (5), and the Deprit series expression for the
operatorsL and T, the inverse transformation operator to
third order may be expressed as

T0
−1 = I , s8ad

T1
−1 = L1, s8bd

T2
−1 = 1

2L2 + 1
2L1

2, s8cd

T3
−1 = 1

3L3 + 1
6L1L2 + 1

3L2L1 + 1
6L1

3. s8dd

It may be noted that whenL, T, and T−1 act upon any
phase space function, they are expressed in the form of Pois-
son brackets, which are independent of the canonical vari-
ables used. This makes the whole formulation canonically
invariant. For a systematic derivation of all these relation-
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ships one may refer to Ref.[12] where they are given up to
fourth order. A shorter description of the same may be found
in Ref. [18].

III. APPLICATION TO A LINEAR SINUSOIDAL
FOCUSING SYSTEM

As an illustration and a test for the validity of the method,
we perform the analysis for a linear periodic focusing sys-
tem. The same example was used in Ref.[9] for the method
developed in that paper. The single-particle Hamiltonian as-
sociated with such a system is given by

H =
p2

2
+

kq2

2
sinsvtd. s9d

This Hamiltonian also describes the motion of a particle in
systems such as the Paul trap and the ponderomotive poten-
tial. We apply Eqs.s7d to perform the averaging. As ex-
plained in the preceding section, we setH0=0 andH1=H.
From Eq.s7ad we get

K0 = H0 = 0. s10d

Applying the first-order relationship, Eq.s7bd, we get

] w1

] t
= K1 −

p2

2
−

kq2

2
sinsvtd. s11d

The third term on the right averages to zero with respect to
time. In order that the net result average to zero, we require

K1 =
p2

2
. s12d

Since w1 is relevant only up to an additive constant, it is
sufficient to evaluate the indefinite integral to determinew1,
hence

w1 =
kq2

2v
cossvtd. s13d

The second-order equation, Eq.s7cd, gives

] w2

] t
= 2K2 −

2kpq

v
cossvtd. s14d

Since the second term on the right side averages to zero, we
choose

K2 = 0, s15d

and so,

w2 = −
2kqp

v2 sinsvtd. s16d

Applying the third-order relationship, Eq.s10d then gives

] w3

] t
= 3K3 +

3p2k

v2 sinsvtd−
k2q2

v2 sin2svtd −
k2q2

2v2 cos2svtd.

s17d

Note that the third and fourth terms on the right side do not
average to zero. In order that they cancel, we set

K3 =
1

4

k2q2

v2 s18d

and as a result,

w3 = −
3p2k

v3 cossvtd. s19d

Collecting the nonzero terms, the transformed Hamiltonian is
now given as a function of the new variables by

K =
P2

2
+

V2Q2

2
, s20d

whereV=k/Î2v. This is the Hamiltonian for a harmonic
oscillator with solution

Qstd = Qs0dcossVtd +
Ps0d

V
sinsVtd, s21d

Pstd = Ps0dcossVtd − VQs0dsinsVtd. s22d

To transform back to the original coordinate system, we use
the operatorT−1 for which we need to knowL up to the
desired order. The operatorsLn can be expressed in terms of
the values ofwn as

L1 = HkQ2

2v
cossvtd,J , s23d

L2 = H−
2kQP

v2 sinsvtd,J , s24d

L3 = H−
3kP2

v3 cossvtd,J . s25d

Using these to perform the inverse transformation as de-
scribed by Eqs.s8d, we get, up to third order,

q = Q +
kQ

v2 sinsvtd +
2kP

v3 cossvtd, s26d

p = P +
kQ

v
cossvtd −

kP

v2sinsvtd+
1

3

k2

v3Q sinsvtdcossvtd.

s27d

The above solution is compared with calculations from a
fourth-order symplectic integratorf19,20g and is shown in
Figs. 1 and 2. The parameters used were the same as those
used in Ref.f9g. The accuracy of the approximate solution
compares well with that obtained by Channelf9g using a
different method. That is, the solution given by Eqs.s26d and
s27d overlaps well with the numerical solution fork/v2

=1/16 and theaccuracy gradually decreases with decreas-
ing v.
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IV. SINGLE PARTICLE AVERAGING FOR A NONLINEAR
LATTICE

A. Alternate gradient sextupoles and quadrupoles

The external magnetic fields in the beam channel are ex-
pected to satisfy Maxwell’s equations in vacuum which are

given by¹W 3BW =0, ¹W ·BW =0. The two-dimensional multipole
expansion expression for such a magnetic field is

By + iBx = B0o
n=0

`

sbn + iandsx + iydn. s28d

Ideally,bn andan must be constants for the above to be valid.
However, when analyzing alternate gradient focusing sys-
tems, they are regarded as step functions of the axial dis-
tance. This is still valid if fringe effects are disregarded.

FIG. 1. q vs t with k=1, v=sad4 , (b) 3, (c) 2.5, and(d) 2. The solid line represents the numerical solution.

FIG. 2. p vs t with k=1, v=sad4, (b) 3, (c) 2.5, and(d) 2. The solid line represents the numerical solution.
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The orientation of the reference frame can be chosen such
that a1=0. Assuming the presence of only quadrupolesn
=1d terms and sextupolesn=2d terms, b1, a2 and b3 will
generally be nonzero. The velocity of the particle in thez
direction is assumed to be constant. The resulting Hamil-
tonian can be obtained from the Lorentz force. In cylindrical
coordinates it is,

H =
1

2
Spr

2 +
l2

r2D +
1

2
k2ssdr2coss2ud+

1

3
k3ssdr3coss3u + ad.

s29d

The variables is the distance along the axis, which is equiva-
lent to time for constant axial velocity. The momentum in the
radial direction ispr and l is the angular momentum. The
values ofk2ssd and k3ssd depend upon the strength of the
quadrupole and sextupole magnets, respectively, and also the
velocity of the particle in the axial direction. The anglea
depends upon the relative values ofa2 andb2, which is de-
termined by the orientation of the sextupoles with respect to
the quadrupoles. We use normalized units in which the
charge and mass of the particle are unity. It is assumed that
the Hamiltonian is periodic ins with periodicity S, i.e.,
k2ss+Sd=k2ssd and k3ss+Sd=k3ssd. It is further assumed
that the average ofk2ssd and k3ssd over a periodS is zero.
That is,

kk2l =
1

S
E

s

s+S

k2ssdds= 0 s30d

and the same fork3. The angular bracketsk¯l denote an
average over one period in the rest of this section. With these
conditions,k2 and k3 can in general be represented in the
form of Fourier series as

k2ssd = o
n=1

n=`

fn sinS2nps

S
D + o

n=1

n=`

gncosS2nps

S
D s31d

and

k3ssd = o
n=1

n=`

kn sinS2nps

S
D + o

n=1

n=`

ln cosS2nps

S
D . s32d

However, the analysis in this section will show that it would
be desirable for the above series to satisfy certain restric-
tions.

The averaging procedure to follow is valid when the av-
eraged orbits are slowly varying over one lattice periodS.
The procedure is identical to the one used in the preceding
section except that the algebra is more tedious since the
Hamiltonian is more complex. Once again, we setH0=0 and
H1=H. From Eq. (7b) we get K0=H0=0. Equation (7c)
yields

] w1

] s
= K1 −

1

2
Spr

2 +
l2

r2D −
1

2
k2ssdr2coss2ud

−
1

3
k3ssdr3coss3u + ad. s33d

From Eqs.s31d and s32d it follows that kk2
I l=kk3

I l=0. The
roman numerical superscript indicates an integral overs with
a constant of integration chosen so that the integral has a
zero average over one lattice periodS. Similarly, a super-
script “II” will indicate a double integration overs with the
same conditions, and so on. ChoosingK1 to cancel the terms
with a nonzero average value then gives

K1 =
1

2
Spr

2 +
l2

r2D . s34d

Integrating Eq.s39d yields

w1 = − f 1
2k2

I ssdr2coss2ud + 1
3k3

I ssdr3coss3u + adg . s35d

Proceeding to evaluate the second-order termw2 from Eq.
(7c) and noting thatL1=hw1,j, we get

] w2

] s
= 2K2 + 2prfk2

I ssdr coss2ud + k3
I ssdr2coss3u + adg

− 2lfk2
I ssdsins2ud + k3

I ssdr sins3u + adg. s36d

Given thatkk2
I l=kk3

I l=0, we must chooseK2=0 since there
are no nonzero average terms. On integrating the above
equation, we find

w2 = 2prfk2
IIr coss2ud + k3

IIssdr2coss3u + adg

− 2lfk2
IIssdsins2ud + k3

IIssdr sins3u + adg. s37d

Knowing w2, we can proceed to the next order to calculate
w3 andK3. Applying Eq. s7dd we get

] w3

] s
= 3K3 − 3pr

2fk2
IIssdcoss2ud + 2k3

IIssdr coss3u + adg + 3lprfk3
IIssdsins3u + adg

+ 3
prl

r
f2k2

IIssdsins2ud + 3k3
IIssdr sins3u + adg + 3

l2

r2f2k2
IIssdcoss2ud + 3k3

IIssdr coss3u + adg

+ fk2
IIssdr coss2ud + k3

IIr2coss3u + adgfk2ssdr coss2ud + k3r
2coss3u + adg

+ fk2
IIssdsins2ud + k3

IIssdr sins3u + adgfk2ssdr2sins2ud + k3ssdr3sins3u + adg
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−
1

2
fk2

I ssdr coss2ud + k3
I ssdr2coss3u + adg2 −

1

2
fk2

I ssdr sins2ud + k3
I ssdr2sins3u + adg2. s38d

From Eqs.(31) and (32) one can easily identify the terms
that average to zero over fast oscillations and those that do
not. Once againK3 is chosen such that it cancels the terms
that average to a nonzero value. On simplifying certain av-
eraged terms from integration by parts, the third-order trans-
formed Hamiltonian may be expressed as

K3 = 1
2ksk2

I d2lr2 − 1
3kk2

I k3
I lr3cossu + ad + 1

2ksk3
I d2lr4.

s39d

Since the HamiltonianK is defined in the transformed coor-
dinate system, the variables must be replaced by the corre-
sponding transformed variables, R andQ, in the above equa-
tion as well as in Eq.s34d.

In order forK3 to be independent ofQ, kk2
I k3

I l must van-
ish. It is clear from Eqs.(31) and(32) that one way this can
be accomplished is ifk2ssd can be expressed as a pure cosine
series andk3ssd as a pure sine series. Figure 3 represents a
practical design fork2ssd andk3ssd which satisfies this con-
dition. This is a specific case where the two lattices have
equal periodicity. In this case,k2ssd and k3ssd are periodic
step functions alternating in sign and with opposite parity,
which is equivalent to a phase lag of a quarter lattice period
with respect to each other. It may be noted that once theQ
dependence is eliminated, the nonlinear force is purely fo-
cusing and leads to a positive tune shift. This design is only
the simplest method of realizing optimum integrability and
need not necessarily be the most practical one for real ma-
chines. However, the formulation of this condition is general
enough to accommodate other designs that are possibly
easier to implement. The general procedure to apply this is to
first expressk2ssd andk3ssd of an existing design in the form
of Eqs.(31) and (32). Then the coefficientkk2

I k3
I l will need

to be evaluated. This would then tell us how to reposition the
magnets in order to minimize this. Numerical results in Sec.

IV will show that considerable improvement in the dynamic
aperture can be accomplished even ifkk2

I k3
I l does not com-

pletely vanish but is small enough.
The purpose of choosingK3 to be independent ofQ is to

look for a system with improved integrability and thereby
improve confinement by reducing chaos. According to the
Kolmogorov-Arnold-Moser(KAM ) theorem, a system per-
turbed from integrability will consist of regions of regular
motion and regions of chaos with the latter approaching zero
exponentially as the system approaches integrability. This
system would be perfectly integrable if theQ dependence
could be completely eliminated. However, the fourth-order
perturbation term will retain theQ dependence. Despite this,
the numerical results in the following sections will show that
restricting the integrability up to third order makes a signifi-
cant improvement in confinement in accordance with the
KAM theorem. It is likely that a few mutipoles or other
components such as undulators in synchrotron radiation
sources cannot be incorporated in the averaging procedure.
Another such example would be beam-beam interactions at
interaction point of a storage ring collider where there might
be many multipoles located at the same place. Superposing
these additional effects randomly to the existing lattice
would invariably make the system less integrable. In such a
situation, it becomes even more important to obtain a system
with optimum integrability since the KAM theorem would
still guarantee that there exists a region in phase space with
particles having regular trajectories. One could also consider
using the method in Ref.[21] to implement the additional
nonlinear components to a lattice that has already been de-
signed to be nearly integrable using the method suggested
here.

B. Alternate gradient quadrupoles, sextupoles, and octupoles

Although the analysis in the preceding section used only
sextupoles, this can be extended to include higher multi-
poles. For example, if octupoles are used in addition to the
sextupoles, the Hamiltonian would be

H =
1

2
Spr

2 +
l2

r2D +
1

2
k2ssdr2coss2ud+

1

3
k3ssdr3coss3u + ad

+
1

4
k3ssdr4coss4u + gd, s40d

where g represents the orientation of the octupoles. The
third-order transformed Hamiltonian will then be

K3 = 1
2ksk2

I d2lr2 + 1
2ksk3

I d2lr4 + 1
2ksk4

I d2lr6− 1
3kk2

I k3
I lr3cossu

+ ad − 1
3kk2

I k4
I lr4coss2u + gd− 1

3kk3
I k4

I lr5cossu + a + gd.

s41d

The conditionskk2
I k3

I l=0, kk2
I k4

I l=0, and kk3
I k4

I l=0 would

FIG. 3. A step function lattice that will lead to a near integrable
condition. The shorter steps represent the sextupole functionk3ssd
while the higher ones the quadrupole functionk2ssd.
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optimize the integrability of such a system. A practical but
idealized design for this to be satisfied is given in Fig. 4.

V. SINGLE-PARTICLE TRAJECTORIES WITH NONZERO
ANGULAR MOMENTUM

To show that particles are better confined when the 90°
phase difference condition is satisfied, numerical calculations
were performed using the original Hamiltonian. The results
are discussed in this and the following sections. Calculations
were performed using a fourth-order symplectic integrator
[19,20] in Cartesian coordinates. Cartesian coordinates are
more convenient for numerical calculations as they enable
one to avoid the singularity at the origin arising in the cylin-
drical coordinate system. The focusing channel consisted of
alternating gradient quadrupoles and sextupoles with various
phase differences betweenk2ssd and k3ssd. The sextupoles

were oriented such thata=−45°. In Cartesian coordinates,
the force due to quadrupoles is given by

FW = k2ssdsxx̂− yŷd. s42d

and that due to the sextupolesswith a=−45°d is given by

FW = k3ssdfsx2 − y2 + 2xydx̂ + sx2 − y2 − 2xydŷg. s43d

We define a radial distanceR= 1
3uk2u / uk3u, whereu−−u cor-

responds to the positive nonzero values of the respective step
function. The ratiouk2u / uk3u represents a measure of the po-
sition where the forces due to the linear and nonlinear com-
ponents become comparable. The tune shift due to the non-
linear force was close to 15% for a particle initially atr =R
andu=45°. The fill factorh is defined as the ratio between
the length of the magnets and the length of one lattice period.
This was set to 0.2 for both, the quadrupoles and sextupoles.
This is typical for most applications. For example, the stor-
age ring of the advanced photon source has a fill factor of
about 0.21 for quadrupoles. When expressed in units ofS, h
is the smallest time scale to be resolved and so the time step
in the computation needs to be much smaller thanh. In all
the computations, this time step was set to 0.01h. The pa-
rameterk2ssd has units of frequency squared so we can de-
fine another dimensionless quantity asuk2uS2 to which the
value of 8.0 was assigned for all calculations. This corre-
sponds to about seven lattice periods per betatron radial os-
cillation about the origin. The separation between the qua-
drupoles and sextupoles is represented by a term

FIG. 4. A step function lattice leading to a near integrable con-
dition. The shortest steps represent the octupole functionk4ssd,
while the higher ones the sextupole functionk3ssd, and the highest
ones the quadrupole functionk2ssd.

FIG. 5. Radial oscillation of particles for(a) c=90°, (b) c=60°, (c) c=30°, (d) c=0°.
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c =
2pDs

S
, s44d

where Ds is the spatial distance between the two of them.
The averaged HamiltonianK is independent ofQ when c
=90°, i.e., when the sextupoles are placed halfway be-
tween two quadrupoles of opposite sign. The values ofR,
h, uk2uS2, andc completely specify the focusing system.

When a system is azimuthally symmetric, angular mo-
mentum is conserved. In this system, whenc=90°, the an-
gular momentum is nearly conserved because the averaged
angular momentum is azimuthally symmetric. As one devi-
ates fromc=90°, the dependence onu becomes stronger and
the variation of angular momentum becomes more signifi-
cant. This would lead to increased chaotic motion. In order to
verify this, as an example, we examined the trajectory of a
particle atr =0.15R. The particle had an initial velocity of
0.05R/S in a direction perpendicular to its initial displace-
ment.

The results of these calculations with respect to different
values ofc are shown in Fig. 5. The rapid variation in am-
plitude represents the lattice oscillations. The values ofc
used were 90°, 60°, 30°, and 0°, respectively. It is clear that
there is a transition to chaotic motion asc deviates from 90°.
For c=90°, the maximum amplitude of oscillation is rela-
tively small. Whenc changes to 60°, the maximum ampli-
tude increases. Atc=60°, we see that additional frequency
components are added to the oscillation. Whenc=0, the
sextupoles and quadrupoles overlap. In this situation the mo-
tion is chaotic. There is no observable repetition in the mo-
tion of the particle and it travels well beyond the maximum

radial distance attained in thec=90° case. This transition
would have been more rapid if the initial position of the
particle was further away from the center. It is sufficient to
examine cases where the phase lag between the quadrupoles
and sextupoles,c, varies from 0° to 90°. Phase differences
outside this range can be mapped back to a corresponding
point between 0° and 90° by making an appropriate linear
transformation inu.

The requirement of reduced chaos becomes important
when sextupoles or other higher multipoles are present in
certain segments of a storage ring where this segment is pe-
riodically encountered by the particles. With reduced integra-
bility, the motion becomes sensitive to the initial conditions
of the particle at the entrance of the segment. This would
eventually lead to increase in oscillation amplitude in the rest
of the channel and consequently limit the dynamic aperture
of the storage ring.

VI. ESTIMATION OF DYNAMIC APERTURE FOR
DIFFERENT CASES

The dynamic aperture is defined as the volume in phase
space in which all particles remain confined throughout their
trajectories in the accelerator. The calculations in this section
estimate the projection of the dynamic aperture onto various
phase space planes for different values ofc. In order to
perform these calculations, we used 5000 particles that were
initially distributed uniformly over the respective plane in
phase space, and these were then evolved for 500 lattice
periods. It was assumed that particles that travel beyondr
=R at any time during this period are not confined. After

FIG. 6. Initial distribution of confined and unconfined particles lying on thex-y plane forc= (a) 0°, (b) 30°, (c) 60°, (d) 90°.

FIG. 7. Initial distribution of confined and unconfined particles lying on thepx-py plane forc= (a) 0°, (b) 30°, (c) 60°, (d) 90°.
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identifying the particles that remain confined and those that
do not, the initial distribution was separated and the positions
of these two sets of particles were plotted. In Figs. 6–8 the
left side represents the initial phase space positions of con-
fined particles and the ones on the right represent the uncon-
fined particles from the same initial distribution. It is impor-
tant to plot the confined and unconfined particles separately
in order to ensure that there is no overlap between the two
regions, which is true in these simulations. This is expected
because all the phase space variables other than those shown
in the respective plot were set to zero. Given that the dy-
namic aperture allows only confined particles and not a mix-
ture of the two, the left side plots represent the projection of
the dynamic aperture onto the respective plane.

Figure 6 shows particles lying in thex-y plane that were
all initially at rest and distributed uniformly within a circle of
radiusr =R. It may be noticed that whenc is 0°, a very small
number of these particles are confined. This is the case when
the quadrupoles and sextupoles completely overlap. The con-
finement increases very rapidly as one deviates fromc=0°.
The area containing the confined particles then gradually in-
creases, reaching a maximum whenc=90° as predicted by
the analytic result of the preceding section. Another interest-
ing feature revealed by these plots is that the area of confine-
ment acquires sharper corners with increasingc.

Figure 7 shows confined and unconfined particles from
the initial distribution spread out in momentum space. These
particles are all located initially atx=y=0 and distributed
uniformly within a circle of radiusP=0.44R/S. Once again,
a rapid improvement in confinement is seen as one deviates
from c=0° and there is then a gradual improvement asc
approaches 90°. Unlike the previous case, the boundary of
the region of confinement is smooth for all values ofc. We
also see that the dynamic aperture attains a more circular
shape forc=90° which could be attributed to weaker depen-
dence of the dynamics onu.

Figure 8 shows particles distributed over an ellipse such
that

x2

R2 +
px

2

s2Pd2 , 1, s45d

while all other phase space values are zero. Qualitatively, the
same behavior is noticeable as in the previous cases. The
figures also show that the shape of the dynamic aperture

exhibits less symmetry about the origin along thex axis asc
decreases from 90°.This is also a reflection of increased
symmetry in the dynamics alongu.

In contrast to the dramatic improvement in the dynamic
aperture seen whenf was close to zero, there was only a
small improvement whenc changed from 60° to 90°. This
phenomena is important in applications where it is not pos-
sible to achieve the idealized condition due to other practical
limitations often demanding that such theoretically derived
conditions be sufficiently robust to be useful. Improvement
in the region of confinement, which is directly related to
increased size of the dynamic aperture is an important aspect
in improving the performance of particle accelerators. It has
been shown how the presence of higher order poles can limit
the size of the dynamic aperture in circular accelerators[22].

VII. SUMMARY

In this paper, a condition for improved dynamic aperture
is derived for nonlinear lattices in particle accelerators. To
start with, the Lie transform perturbation method is presented
for averaging over fast time scales. The validity of the
method is first verified numerically for a linear periodic fo-
cusing system. This averaging procedure is then applied to
nonlinear focusing systems with quadrupoles and sextupoles.
The Hamiltonian of this system contains terms with mixed
variables, a situation in which the Lie transform method
greatly simplifies the analysis. This analysis yields a condi-
tion for the Hamiltonian to have increased symmetry thereby
reducing chaos and increasing the dynamic aperture. The
condition leads to a canonical transformation where the new
Hamiltonian is independent of its azimuthal variable up to
third order in the perturbation expansion. While the analysis
was performed explicitly for a lattice with quadrupoles and
sextupoles, it was straightforward to show that similar con-
ditions exist when even higher order mutipoles or combina-
tions of these are used. Unlike the traditional approach of
analyzing a nonlinear lattice, no assumption was made that
the nonlinear focusing was small compared to the linear fo-
cusing strength. Hence this analysis is valid even when the
nonlinearity is strong enough that the closed form Courant-
Snyder solutions are not valid.

Numerical calculations were performed for a particular
case in which the focusing components were quadrupoles
and sextupoles represented by periodic step function lattices

FIG. 8. Initial distribution of confined and unconfined particles lying on thex-px plane forc= (a) 0°, (b) 30°, (c) 60°, (d) 90°.
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of equal periodicity. In this case, the condition of azimuthal
symmetry in the transformed frame was satisfied by having a
phase difference ofc=90°, equivalent to a quarter of a lat-
tice period between the quadrupoles and sextupoles. Single-
particle trajectories of particles with angular momentum
showed increased chaotic behavior asc decreased from 90°
to 0°. The size of the dynamic aperture was estimated by
allowing the particles to drift up to a maximum radial dis-
tance which allowed a maximum tune shift of about 15%
when compared to arbitrarily small oscillations. Calculations
showed that the size of the dynamic aperture increased rap-
idly as c increased from 0° and gradually reached a maxi-
mum asc approached 90°. Results showed that the condition
was robust enough for possible practical applications.

While the parameters used in the calculations were real-
istic, they were also simplified. This theory remains to be
applied to parameters specific to real machines. For example,
it would be interesting to apply it in the use of sextupoles for
chromaticity corrections in storage rings with their lattice
periods different from that of the quadrupoles and also hav-

ing a different fill factor. This would still allow conditions for
a near integrable system and so one should expect improved
confinement by imposing the same.

The derivation of the symmetric transformed Hamiltonian
in this paper is expected to benefit various current and pro-
posed applications of nonlinear lattices in particle accelera-
tors. It would also add to previous work on increasing the
dynamic aperture of accelerator lattices in the presence of
nonlinear components[21]. The Lie transform perturbation
method presented here is easily applicable to other areas of
Hamiltonian dynamics as well where it is required to per-
form a time averaging over certain fast time scales.
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