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Finding a nonlinear lattice with improved integrability using Lie transform perturbation theory
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A condition for improved dynamic aperture for nonlinear, alternating gradient transport systems is derived
using Lie transform perturbation theory. The Lie transform perturbation method is used here to perform
averaging over fast oscillations by canonically transforming to slowly oscillating variables. This is first dem-
onstrated for a linear sinusoidal focusing system. This method is then employed to average the dynamics over
a lattice period for a nonlinear focusing system, provided by the use of higher order poles such as sextupoles
and octupoles along with alternate gradient quadrupoles. Unlike the traditional approach, the higher order
focusing is not treated as a perturbation. The Lie transform method is particularly advantageous for such a
system where the form of the Hamiltonian is complex. This is because the method exploits the property of
canonical invariance of Poisson brackets so that the change of variables is accomplished by just replacing the
old ones with the new. The analysis shows the existence of a condition in which the system is azimuthally
symmetric in the transformed, slowly oscillating frame. Such a symmetry in the time averaged frame renders
the system nearly integrable in the laboratory frame. This condition leads to reduced chaos and improved
confinement when compared to a system that is not close to integrability. Numerical calculations of single-
particle trajectories and phase space projections of the dynamic aperture performed for a lattice with quadru-
poles and sextupoles confirm that this is indeed the case.
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I. INTRODUCTION whole formulation is canonically invariant. If this were not

Linear focusing systems such as the alternate gradieﬁ ue, one would need to express the Hamiltonian in terms of

quadrupole systems are relatively easy to analyze because G New variables up to the desired order before performing
the existence of the Courant-Snyder invariaft which the perturbation analysis. This could make the problem more

reduce the system to an uncoupled set of systems of Or{gdious when the form of the Hamiltonian is not simple, and

degree of freedom. In the presence of higher order compaNen it is required to carry the expansion up to third order,
nents such as sextupoles or octupoles, these invariants a?@th of which are true in this case. Referenf®sl] contain

; : : ther procedures for averaging applied to beam physics. We
destroyed. Such a system is nonintegrable and has trajectﬁ— X . .
: : : : : ollow the Lie transform method described in R and

ries _that_are chaotic and pc_JorIy confined. Despite _thls short-hoW that rearranging the different order terms (E‘Iﬁ]we Hamil-
coming in the use of nonlinear components, their use ha onian in this method enables one to perform a time averag-
been proposgd In a variety of apphca_uorys. They include, foring rather than average the motion over the trajectory de-
example, achieving uniform particle distributiof#3, control

. scribed by the integrable component of the Hamiltonian.
of beam emittance growth and beam halo formatid, To start with, Sec. Il provides a brief description of the

providing strong sextupole focusing in planar undulators i g {ransform method used in this paper. Section Il presents
free electron laserf3], folding of beam phase space distri- ap jllustration of the method applied to a continuous periodic
butions as an alternate to beam COI“mat[Gl]", IntI’OdUCIng focusing System, an examp'e a|So used by Chat@ie“n
Landau damping by providing octupole or sextupole inducedsec. IV, we introduce a nonlinear focusing system which has
tune spread5,6], photoelectron trapping in quadrupole and a higher order multipoles in addition to quadrupoles. The
sextupole magnetic field], etc. In addition to this sextu- resulting Hamiltonian describing the motion transverse to the
poles are widely used in storage rings for cromaticity correcheam propagation is nonautonomous and has two degrees of
tions. Nonlinear forces also arise as a result of beam-bearfneedom. By averaging the motion over the lattice period up
interactions at interaction point of a storage ring colliderto third order, we derive a condition for the new time-
which limit the dynamic aperture of the systd8]. Thus, a independent Hamiltonian to also be independent of the trans-
general analysis of the nonlinear focusing problem is imporformed azimuthal variable. Under such a condition, the
tant. It is well known that a near integrable Hamiltonian transformed angular momentum will be an adiabatic invari-
system will typically possess regular trajectories inter-ant. It will be shown that this condition is satisfied when the
mingled with regions of chaos. The aim of this paper is tofunctions describing the forces due to the respective multi-
find a condition that optimizes the integrability of the systempole are orthogonal to each other in a certain manner.
thereby minimizing the chaotic region in the presence of In order to show that the condition of azimuthal invari-
certain nonlinear focusing components. ance is a desirable one, various numerical calculations are
To perform the analysis we use the Lie transform perturperformed. Section V includes results which show that as
bation method, which exploits the invariance of the Poissorone deviates from the desired condition, the particle oscilla-
brackets under canonical transformations. In this analysis ations acquire additional frequency components and also have
dynamical variables appear within Poisson brackets, so thiarger oscillation amplitudes. Section VI illustrates the pro-
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jection of the dynamic aperture on to different planes in To obtain explicit equations for each perturbation term,
phase space. The dynamic aperture is the region that allovevery physical quantity and operator is expressed as a power
what may be defined as confined particles. Estimating theeries ine known as the Deprit power serigs5]. The origi-
dynamic aperture for different cases shows that maximunmal and transformed Hamiltonians are given Hyz,e,t)
confinement can be achieved when the associated time avetrS_ "H(z,t), K(z,€e,t)=2,_,€"K,(z,1). The Lie generat-
aged Hamiltonian is integrable in the transformed coordiding function is represented a little differently because it ap-
nates and hence the system is nearly integrable in the labgears as a derivative in Eq(6). This is, w(z,t,e)
ratory frame. The dynamic aperture is shown to gradually=3> e'w,,,(z,t). The operatord andL are represented in a
diminish in size as one deviates from this condition. similar way asT(t,e)=37 (e T(t), L(W)=3"_,€"L,, where
L,={w,,}, the Poisson bracket with respectig The param-
etere is used to keep track of the terms representing different
Il. THE LIE TRANSFORM METHOD FOR AVERAGING orders in the expansion and is usually set to one in the end.
OVER FAST OSCILLATIONS By substituting the Deprit expansions into E@4), (5),
and (6), one can obtain relationships between the corre-
sponding terms for each order @fDoing this for Eq(6), we
get, up to third order,

In this section we outline the Hamilton perturbation
method described in Reff12]. This method is based on pre-
vious work[13-17 that introduced Lie transform theory as a
convenient method to perform Hamilton perturbation analy- Ko = Ho, (78
sis. The Lie transformation is defined with respect to a phase
space functiorw such that it satisfies the following Poisson aw

bracket relationship: T {wy,Hot =Ky — Hy, (7b)

dz
4 {Z,W(Z(z,t,6),.t,6)}, (1) )
€ w.
_ _ 2+ {wy, Hob = 2K = Hp) ~ Ly(Ky +Hy),  (70)
where Z=(P,Q) is a phase space vector representing the dt
generalized positions and momenta of the systenis the
Lie generating function, andis a continuously varying pa- Jd W3 _
rameter such th&t (e=0) =z, the original phase space vector. ot *{wz,Ho} = 3(K3 ~ Ha) ~ Ly(Ky + 2Hp)
The above relationship resembles Hamilton’s equation with
respect to a “Hamiltonian,v and “time,” e. This guarantees - 1 _12
ol . Lo\ Ky + SHy LiH;.  (7d)
that the transformation is canonical for all valueseof 2 2
The Lie operatot is defined such that it performs a Pois-

son bracket operation with respectwo Symbolically, The expressiodwy/ dt+{wn, Ho} is the variation ofw, along

the unperturbed trajectory described Bly. SettingHy=0
L={w,}. (2)  reduces this to a partial derivative with respectttdhus,

At ‘ i (oF is defined h that its role is t instead of integrating along the unperturbed trajectory, we
ransformation operator IS definéd such that Its rol€ IS 10 g5y perform an integration over time to determimg At

replace the variables of a function by the new canonical varig, oy ‘orgerk, is chosen such that it cancels the terms that
ables. For the identity function this is simply,

average to a nonzero value over fast oscillations. As a result,
Tz=Z(z,€t). (3)  the corresponding value of, will have a zero average. This

) ) _is necessary to prevemt, from being seculagunboundeglin
The operatofl is analogous to the “evolution” operator with time [12].

respect toe. Using EQ(].) it can be verified thal satisfies Using Eg.(5), and the Deprit series expression for the
operatorsL and T, the inverse transformation operator to
dT :
a =-TL. (4)  third order may be expressed as
€
To =1, (8a)

For a similar relationship involving the inverse transforma-
tion operatorT™%, we differentiate the equatiohiT =1 and

-1 _
use the above equation to obtain T =Ly, (8b)
T! -
ar-_ T, (5 T, =35l + 5L, (8¢
de
The transformed Hamiltonialki can be expressed in terms of Tot=2lg+ glolo + 3Ll + L3, (8d)

the original Hamiltoniar{ as
9! litoniarv¢ It may be noted that wheh, T, and T™! act upon any

R 4 0w phase space function, they are expressed in the form of Pois-
K(e)=T(e)(H)+T (e) | de'T(e )E(f ). (6)  son brackets, which are independent of the canonical vari-

0 ables used. This makes the whole formulation canonically

This expression was obtained by Devjab]. invariant. For a systematic derivation of all these relation-
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ships one may refer to Refl2] where they are given up to 1 k%P
fourth order. A shorter description of the same may be found Ks= 22 (18
in Ref. [18].

1. APPLICATION TO A LINEAR SINUSOIDAL and as a result,

FOCUSING SYSTEM 2
_ 3pk
As an illustration and a test for the validity of the method, Ws="~ FCOS(“’U‘ (19)
we perform the analysis for a linear periodic focusing sys-
tem. The same example was used in R@f.for the method Collecting the nonzero terms, the transformed Hamiltonian is
developed in that paper. The single-particle Hamiltonian asnow given as a function of the new variables by
sociated with such a system is given by , -
7k k=P, 0°Q ,
H="—>+—sin(wt). (9) 2 2
2 2
This Hamiltonian also describes the motion of a particle inwhere=k/\2w. This is the Hamiltonian for a harmonic
systems such as the Paul trap and the ponderomotive potefscillator with solution
tial. We apply Egs.7) to perform the averaging. As ex- P(0)
plained in the preceding section, we $¢&4=0 andH,=H. - 2V
From Eq.(7a we get Q) =Q(0)cos 2 + Q sin(2w), (2)

(20)

Ko=Hp=0. (10
P(t) = P(0)cogQt) — QQ(0)sin(t). 22
Applying the first-order relationship, Eq7b), we get ()= P(O)cod ) Q(O)sin(y) 22
IW P2 ke To transform back to the original coordinate system, we use
—1-= Ki— = ——sin(wt). (11 the operatorT™! for which we need to know. up to the
It 2 2 desired order. The operatdrg can be expressed in terms of
The third term on the right averages to zero with respect t¢he values ofw, as
time. In order that the net result average to zero, we require KQ?
P’ Li= {—cosuot),} : (23
Ky=—. (12) 20
2
Sincew; is relevant only up to an additive constant, it is 2kQP |
sufficient to evaluate the indefinite integral to determmg Lo=9- w2 sin(wt), (, (24
hence
ko? 3kP?
wlzzcoe(wt). (13 Lsz{— = cogwt), (. (25)

The second-order equation, E@c), gives ) ) i
q Ho). 9 Using these to perform the inverse transformation as de-

JW. 2k scribed by Eqs(8), we get, up to third order,
W2 _ ok~ TP oq ). (14) y Eqs(8), we get, up
at w
KQ . 2kP
Since the second term on the right side averages to zero, we q=Q+ ?Sln(wt) + Fcoiwt), (26)
choose
K,=0, (15) kQ kP 1k
and so. p=P+ Zcos(wt) - ;sm(wt)+ §;Q sin(wt)coq wt).
2k (27
Wy = — #’sin(wt). (16)
w

The above solution is compared with calculations from a
Applying the third-order relationship, E€10) then gives fourth-order symplectic integratdr9,20) and is shown in
w a0k & 22 F|gsci 1 aF?df [Zé]T_r}(ra] parameters L;S(r-l']d were the same las. those
IW3 _ opK . _Kg . _Kq used in Ref[9]. The accuracy of the approximate solution
at =Kt w? sin(wt) w? sinf(wt) 2 zcos(at). compares well with that obtained by Chaniél] using a
different method. That is, the solution given by E(6) and
(27) overlaps well with the numerical solution fdt/ w?
Note that the third and fourth terms on the right side do not=1/16 and theaccuracy gradually decreases with decreas-
average to zero. In order that they cancel, we set ing w.

(17)
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FIG. 1. g vst with k=1, w=(a)4 , (b) 3, (c) 2.5, and(d) 2. The solid line represents the numerical solution.

IV. SINGLE PARTICLE AVERAGING FOR A NONLINEAR oo
LATTICE B, +iB, =By, (b, +ia,)(x+iy)". (28)

n=0
A. Alternate gradient sextupoles and quadrupoles

The external magnetic fields in the beam channel are exgeally, b, anda,, must be constants for the above to be valid.
pected to satisfy Maxwell's equations in vacuum which areqowever, when analyzing alternate gradient focusing sys-
given by VX B=0, V-B=0. The two-dimensional multipole tems, they are regarded as step functions of the axial dis-

expansion expression for such a magnetic field is tance. This is still valid if fringe effects are disregarded.
1.0 T T 1.0
D@ ] (e
05- . 0.5
0.0 W\W\ UW/\[\ B 0.0
p ] Pl
-0.5- 1 -0.51
1.0 . -1.0
0 20 40 60 80 0 20
1.0 1.0
(b)
0.5[ 4 05
0.0 ]\/ 0.0
p p
0.5 - -0.5
1.0 . 1.0 . N
0 20 40 60 80 40 60 80

t t

FIG. 2. pvst with k=1, w=(a)4, (b) 3, (¢c) 2.5, and(d) 2. The solid line represents the numerical solution.
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The orientation of the reference frame can be chosen such The averaging procedure to follow is valid when the av-
that a;=0. Assuming the presence of only quadrup@fe eraged orbits are slowly varying over one lattice perd
=1) terms and sextupolén=2) terms,b,, a, and b; will The procedure is identical to the one used in the preceding
generally be nonzero. The velocity of the particle in the section except that the algebra is more tedious since the
direction is assumed to be constant. The resulting HamilHamiltonian is more complex. Once again, we ldgt0 and
tonian can be obtained from the Lorentz force. In cylindricalH;=H. From Eqg. (7b) we get K,=H,=0. Equation(7c)

coordinates it is, yields
i, By 1, 1 s Iw 1/, 12\ 1
H= E(pr + F) + EKZ(S)r coq26)+ éxg(s)r cog30+ a). a_sl =K, - > p?+ )" 5,(Z(S)rZCOS(zg)
(29

1
. . . . o . - ~k3(9)r3cog36+ a). 33
The variablesis the distance along the axis, which is equiva- 3K3(S) 36+ ) (33

lent to time for constant axial velocity. The momentum in the

radial direction isp, and| is the angular momentum. The From Egs.(31) and (32) it follows that («)=(x})=0. The
values of k,(s) and x5(s) depend upon the strength of the roman numerical superscript indicates an integral eweith
quadrupole and sextupole magnets, respectively, and also teeconstant of integration chosen so that the integral has a
velocity of the particle in the axial direction. The angle zero average over one lattice peri&d Similarly, a super-
depends upon the relative valuesagfandb,, which is de-  script “IlI” will indicate a double integration oves with the
termined by the orientation of the sextupoles with respect t¢ame conditions, and so on. Chooslifigto cancel the terms
the quadrupoles. We use normalized units in which thewith a nonzero average value then gives
charge and mass of the particle are unity. It is assumed that 5

the Hamiltonian is periodic irs with periodicity S, i.e., K, = 1<p | )
Ko(S+S) = ky(S) and ks(s+9)=ky(s). It is further assumed '

that the average ok,(s) and x5(s) over a periodS is zero.

That is, Integrating Eq.(39) yields

(34)

() = }fs+5 (ds=0 (30 w; = —[ 2kh(5)r2cog26) + Ty(9)r’cog30+ ) |. (35)
SJs

Proceeding to evaluate the second-order tegfrom Eq.
and the same foks. The angular bracketé -y denote an (7€) and noting that;={w,}, we get
average over one period in the rest of this section. With these

conditions, k, and x5 can in general be represented in the IW2 _ 2K, + 2p[ kH(S)r CO26) + K5(S)r2cog360+ )]
form of Fourier series as Js

Eof sm(

= 2A[k5(9)sin(26) + k() siN(36+ a)]. (36)

n=oc
s 2nms
)+E GnCO —) (31) . L .
n=1 S Given that(x;)=(k3)=0, we must choos&,=0 since there
are no nonzero average terms. On integrating the above
equation, we find

K3(S) = 2 K, sm( ) + 2 I S(Zn;rs) (32 Wy = 2pr[f< r cog26) + K l(s)r2coq36+ a)]
- 2I[K2(s)sm(20) + K3(S rsin30+a)]. (37

and

However, the analysis in this section will show that it would
be desirable for the above series to satisfy certain restridcknowing w,, we can proceed to the next order to calculate
tions. ws andKz. Applying Eqg.(7d) we get

%’ = 3K;3 - 3p7[ k3 (S)c0g26) + 2k3(S)r cog360+ )]+ 3Ip, [k (9)siN(36+ )]

2
+ 3—[2K (s)sin(26) + 3k5(9)r sin(30+ a)] + 3:—2[2Kg(S)COS(20) +3K3(S)r cog360+ )]

+[ k5 (9)r cog26) + k5r?cog360+ a) [ kx(S)r cOL26) + kar’cog360+ )]
+ [K (s)sin(20) + K H(9)r sin(30+ a) ][ kx(S)r2sin(26) + k3(s)risin(36+ )]
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- %[K'z(s)r cog26) + ky(s)r’cog30+ a) * - %[K'z(s)r Sin(26) + K5(s)r’sin(360 + a) 2. (39

From Egs.(31) and (32) one can easily identify the terms IV will show that considerable improvement in the dynamic
that average to zero over fast oscillations and those that daperture can be accomplished everx§xs) does not com-
not. Once agairK; is chosen such that it cancels the termspletely vanish but is small enough.

that average to a nonzero value. On simplifying certain av- The purpose of choosing; to be independent dd is to
eraged terms from integration by parts, the third-order transfook for a system with improved integrability and thereby

formed Hamiltonian may be expressed as improve confinement by reducing chaos. According to the
Kolmogorov-Arnold-Moser(KAM ) theorem, a system per-
Kq= %<(K|2)2>r2_ %(x'zxg)r3cos(0+ a) + %<(KI3)2>r4_ turbed from integrability will consist of regions of regular

motion and regions of chaos with the latter approaching zero
(39 exponentially as the system approaches integrability. This
system would be perfectly integrable if t®@ dependence
Since the Hamiltoniak is defined in the transformed coor- could be completely eliminated. However, the fourth-order
dinate system, the variables must be replaced by the corrg@erturbation term will retain th® dependence. Despite this,
sponding transformed variables, R afdin the above equa- the numerical results in the following sections will show that
tion as well as in Eq(34). restricting the integrability up to third order makes a signifi-
In order forKs to be independent d, (x5 must van-  cant improvement in confinement in accordance with the
ish. It is clear from Eqs(31) and(32) that one way this can KAM theorem. It is likely that a few mutipoles or other
be accomplished is i,(s) can be expressed as a pure cosinecomponents such as undulators in synchrotron radiation
series andk,(S) as a pure sine series. Figure 3 represents §ources cannot be incorporated in the averaging procedure.
practical design foi,(s) and 4(s) which satisfies this con- Another such example would be beam-beam interactions at
dition. This is a specific case where the two lattices havdnteraction point of a storage ring collider where there might
equal periodicity. In this cases,(s) and x4(s) are periodic P& many multipoles located at the same place. Superposing
step functions alternating in sign and with opposite parity,these .add|t_|onal effects randomly to .the existing lattice
which is equivalent to a phase lag of a quarter lattice periodvould invariably make the system less integrable. In such a
with respect to each other. It may be noted that once@the Situation, it becomes even more important to obtain a system
dependence is eliminated, the nonlinear force is purely foWith optimum integrability since the KAM theorem would
cusing and leads to a positive tune shift. This design is onlylill guarantee that there exists a region in phase space with
the simplest method of realizing optimum integrability and pa_rt|cles having regular trajectories. One could also_c_on5|der
need not necessarily be the most practical one for real maiSing the method in Ref21] to implement the additional
chines. However, the formulation of this condition is generainonlinear components to a lattice that has already been de-
enough to accommodate other designs that are possibffgned to be nearly integrable using the method suggested

easier to implement. The general procedure to apply this is tere-
first expressc,(s) and k5(s) of an existing design in the form
of Egs.(31) and(32). Then the coefficientxyrs) will need o _ _
to be evaluated. This would then tell us how to reposition the Although th? analysis in the precedmg section used onl_y
magnets in order to minimize this. Numerical results in SecS€Xtupoles, this can be extended to include higher multi-
poles. For example, if octupoles are used in addition to the

sextupoles, the Hamiltonian would be

B. Alternate gradient quadrupoles, sextupoles, and octupoles

2 - f H—}( 2+E>+} (s)rzcoe(20)+} (s)r3cod360 + a)
S o ] “o\Prtz) T ore 3/ «
c K ¥
. [ 1 1
. : § + 2 Kk(Ir'cogdd +y), (40)
L ok ) -
© where y represents the orientation of the octupoles. The
-0.2F third-order transformed Hamiltonian will then be

O
O
@)
@)
oo
@)
N
@)
N
o)l

Ka = 3{(k)2)1% + H(sc))r + 3{(i?)ro= J(iprrcos( 6

s/S
/ +a) = S korricod20+ y)— 2(rhrl)rocog O+ a + ).
FIG. 3. A step function lattice that will lead to a near integrable (41)
condition. The shorter steps represent the sextupole funet(
while the higher ones the quadrupole functies). The conditions(x'zK'3>=O, <K|2K|4>:O, and<K'3K'4):O would
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0.2 were oriented such that=-45°. In Cartesian coordinates,

@ ' the force due to quadrupoles is given by

E O' w I7| _:

3] I

= [

2 00 : o - ..

o ¥ F = k() (XX - yY). (42)

£ -0 .

©

-0.2F and that due to the sextupolésith a=-45°) is given by
0.0 0.5 1.0 1.5 2.0 2.5
s/S .
F=r3(9)[(C - y?+ 2&xy)%+ (X —y* - 2xy)¥].  (43)
FIG. 4. A step function lattice leading to a near integrable con- _ o 1

dition. The shortest steps represent the octupole funciits), We define a radla_ll_dlstandéz§|K2|/|K3|, where|—-| cor-
while the higher ones the sextupole functies(s), and the highest responds to the positive nonzero values of the respective step
ones the quadrupole functiog(s). function. The ratig«,|/|x5| represents a measure of the po-

sition where the forces due to the linear and nonlinear com-

optimize the integrability of such a system. A practical butPonents become comparable. The tune shift due to the non-

idealized design for this to be satisfied is given in Fig. 4. linear force was close to 15% for a particle initially R
and §=45°. The fill factor# is defined as the ratio between

the length of the magnets and the length of one lattice period.
This was set to 0.2 for both, the quadrupoles and sextupoles.
This is typical for most applications. For example, the stor-
To show that particles are better confined when the 90age ring of the advanced photon source has a fill factor of
phase difference condition is satisfied, numerical calculationgbout 0.21 for quadrupoles. When expressed in uni§ of
were performed using the original Hamiltonian. The resultgs the smallest time scale to be resolved and so the time step
are discussed in this and the following sections. Calculation# the computation needs to be much smaller tarn all
were performed using a fourth-order symplectic integratothe computations, this time step was set to @.0Ihe pa-
[19,2Q in Cartesian coordinates. Cartesian coordinates areameterx,(s) has units of frequency squared so we can de-
more convenient for numerical calculations as they enabléine another dimensionless quantity [as|S? to which the
one to avoid the singularity at the origin arising in the cylin- value of 8.0 was assigned for all calculations. This corre-
drical coordinate system. The focusing channel consisted cfponds to about seven lattice periods per betatron radial os-
alternating gradient quadrupoles and sextupoles with variousillation about the origin. The separation between the qua-
phase differences between(s) and «3(s). The sextupoles drupoles and sextupoles is represented by a term

V. SINGLE-PARTICLE TRAJECTORIES WITH NONZERO
ANGULAR MOMENTUM

0.251 . \ \ \ . 0.25
(@)
0.20f ] 0.20
' b il |
0.15 MMMMMMMWMMMWMMMMMMMMMM 8 015
/R /R

0.10r . 0.101 1
0.05" ] 0.05f ]
0005 20 40 oS 60 80 100 0'006 20 40 oS 60 80 100
0.251 0.25

© ] @b
0201 ] 0200 /“h /y 5{(; J\}V ju;? t x‘“‘ ,‘f M f’ﬁ,
T M AR

Vb

0.05 ] 0.05f ]

0.00 . . . . 0.00 . , . ,
0 20 40 60 80 100
0 20 40 /S 60 80 100 s/S

FIG. 5. Radial oscillation of particles fqn) ¥=90°, (b) ¥=60°, (c) #»=30°, (d) ¢=0°.
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1.0 (c) 1.0
05 05
Z o0 & < o0
=05 T, >.0.5
1.0 -, -1, 1.0
1.0 05 0.0 05 1.0 10 -05 00 05 1.0 10 -05 00 05 10 -10 0500 0510
x/R x/R x/R x/R
1.0 (b) 1.0 1.0 {d) 1.0
05 05 05 05
Soo .00 < 00 T 00
-0.5 0.5 0.5 -0.5
1.0 -1.0 e 1.0 1.0 o
1.0 -05 0.0 05 1.0 1.0 0500 05 1.0 10 -05 0.0 05 10 1.0 -05 0.0 05 1.0
x/R x/R x/R x/R

FIG. 6. Initial distribution of confined and unconfined particles lying onxheplane fory= (a) 0°, (b) 30°, (c) 60°, (d) 90°.

27As radial distance attained in th#=90° case. This transition

= s (44 would have been more rapid if the initial position of the
particle was further away from the center. It is sufficient to

where As is the spatial distance between the two of them.examine cases where the phase lag between the quadrupoles

The averaged HamiltoniaK is independent o® when ¢  and sextupolesy, varies from 0° to 90°. Phase differences

=90°, i.e., when the sextupoles are placed halfway beeutside this range can be mapped back to a corresponding

tween two quadrupoles of opposite sign. The valueRof point between 0° and 90° by making an appropriate linear

», |k,|S, and ¢ completely specify the focusing system. transformation iné.

When a system is azimuthally symmetric, angular mo- The requirement of reduced chaos becomes important
mentum is conserved. In this system, whgn90°, the an- when sextupoles or other higher multipoles are present in
gular momentum is nearly conserved because the averageértain segments of a storage ring where this segment is pe-
angular momentum is azimuthally symmetric. As one devi-riodically encountered by the particles. With reduced integra-
ates fromy=90°, the dependence @rbecomes stronger and bility, the motion becomes sensitive to the initial conditions
the variation of angular momentum becomes more signifiof the particle at the entrance of the segment. This would
cant. This would lead to increased chaotic motion. In order teeventually lead to increase in oscillation amplitude in the rest
verify this, as an example, we examined the trajectory of &f the channel and consequently limit the dynamic aperture
particle atr=0.15R. The particle had an initial velocity of of the storage ring.
0.05R/Sin a direction perpendicular to its initial displace-
ment.

The results of these calculations with respect to different
values ofy are shown in Fig. 5. The rapid variation in am-
plitude represents the lattice oscillations. The values)of The dynamic aperture is defined as the volume in phase
used were 90°, 60°, 30°, and 0°, respectively. It is clear thaspace in which all particles remain confined throughout their
there is a transition to chaotic motion @gleviates from 90°.  trajectories in the accelerator. The calculations in this section
For 4=90°, the maximum amplitude of oscillation is rela- estimate the projection of the dynamic aperture onto various
tively small. Wheny changes to 60°, the maximum ampli- phase space planes for different values¢ofin order to
tude increases. A=60°, we see that additional frequency perform these calculations, we used 5000 particles that were
components are added to the oscillation. When0, the initially distributed uniformly over the respective plane in
sextupoles and quadrupoles overlap. In this situation the mghase space, and these were then evolved for 500 lattice
tion is chaotic. There is no observable repetition in the moperiods. It was assumed that particles that travel beyond
tion of the particle and it travels well beyond the maximum=R at any time during this period are not confined. After

VI. ESTIMATION OF DYNAMIC APERTURE FOR
DIFFERENT CASES
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FIG. 7. Initial distribution of confined and unconfined particles lying on g, plane fory= (a) 0°, (b) 30°, (c) 60°, (d) 90°.
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1.0 1.0 (c) 1.0
io.s o 05 Q 05
0.0 s & 00 g 00
0.5 g -05 805
-1.0 L -1.0 -1.0 RO
1.0 05 0.0 05 1.0 -1.0 0500 05 1.0 -1.0 -05 0.0 05 1.0 -1.0 -0.5 0.0 0.5 1.0
x/R x/R x/R x/R
1.0
o 05
Foo iR
2 .05
-1.0 : -1, . 1. . D
1.0 -05 0.0 05 1.0 -1.0 -05 0.0 05 1.0 -1.0 -0.5 0.0 0.5 1.0 -1.0 0.5 0.0 05 1.0
x/R x/R x/R x/R

FIG. 8. Initial distribution of confined and unconfined particles lying onxthg plane fory= (a) 0°, (b) 30°, (c) 60°, (d) 90°.

identifying the particles that remain confined and those thaéxhibits less symmetry about the origin along khaxis asy

do not, the initial distribution was separated and the positionslecreases from 90This is also a reflection of increased

of these two sets of particles were plotted. In Figs. 6—8 thesymmetry in the dynamics along

left side represents the initial phase space positions of con- In contrast to the dramatic improvement in the dynamic

fined particles and the ones on the right represent the uncomaperture seen wheg was close to zero, there was only a

fined particles from the same initial distribution. It is impor- small improvement whers changed from 60° to 90°. This

tant to plot the confined and unconfined particles separatelghenomena is important in applications where it is not pos-

in order to ensure that there is no overlap between the twsible to achieve the idealized condition due to other practical

regions, which is true in these simulations. This is expectedimitations often demanding that such theoretically derived

because all the phase space variables other than those shoeonditions be sufficiently robust to be useful. Improvement

in the respective plot were set to zero. Given that the dyin the region of confinement, which is directly related to

namic aperture allows only confined particles and not a mixincreased size of the dynamic aperture is an important aspect

ture of the two, the left side plots represent the projection ofn improving the performance of particle accelerators. It has

the dynamic aperture onto the respective plane. been shown how the presence of higher order poles can limit
Figure 6 shows particles lying in they plane that were the size of the dynamic aperture in circular accelergi@2s

all initially at rest and distributed uniformly within a circle of

radiusr =R. It may be noticed that wheiis 0°, a very small

number of these particles are confined. This is the case when VIl. SUMMARY

the quadrupoles and sextupoles completely overlap. The con- In this paper, a condition for improved dynamic aperture

finement incr very rapidl n viates frgn®°. . : . . . i
eme creases very rapidly as one deviates . is derived for nonlinear lattices in particle accelerators. To

The area conta_lnmg the c_onfmed partlclces then g_radually "Ntart with, the Lie transform perturbation method is presented
creases, reaching a maximum whgr 90° as predicted by

the analytic result of the preceding section. Another interes for averaging over fast time scales. The validity of the
in featuyre revealed b thpese Iotg is that the area of confingr ethod is first verified numerically for a linear periodic fo-

9 . y piots 1S tusing system. This averaging procedure is then applied to
ment acquires sharper corners with increasing

nonlinear focusing systems with quadrupoles and sextupoles.

Figure 7 shows confined and unconfined particles froml'he Hamiltonian of this system contains terms with mixed

the [n|t|al distribution spre_ad_out n r_noinentum space. TheS(\a/ariables, a situation in which the Lie transform method
particles are all located initially at=y=0 and distributed

uniformly within a circle of radiusP=0 44R/S. Once again greatly simplifies the analysis. This analysis yields a condi-

a rapid improvement in confinement is seen as one deviatetion for the Hamiltonian to have increased symmetry thereby
P _ op : ; r%ducing chaos and increasing the dynamic aperture. The
from ¢=0° and there is then a gradual improvementyas

anproaches 90°. Unlike the previous case. the boundar c,[ondition leads to a canonical transformation where the new
pproac - ep ' Y Yamiltonian is independent of its azimuthal variable up to
the region of confinement is smooth for all valuesyofWe

also see that the dvnamic aperture attains a more Circulthird order in the perturbation expansion. While the analysis
shape fory=90° whi():/h could bF:a attributed to weaker de en_%as performed explicitly for a lattice with quadrupoles and
b v= P sextupoles, it was straightforward to show that similar con-

derl]:(i:geu?; tgesr?g\?vzrggrstiggs distributed over an ellipse Sud%J_Iitions exist when even highe_zr order mut_ipoles or combina-
that tions qf these are used. .Unllke the trad|t_|onal approach of
analyzing a nonlinear lattice, no assumption was made that
5 2 the nonlinear focusing was small compared to the linear fo-
X + Px < (45) cusing strength. Hence this analysis is valid even when the
RZ (2P)2 7 nonlinearity is strong enough that the closed form Courant-
Snyder solutions are not valid.

while all other phase space values are zero. Qualitatively, the Numerical calculations were performed for a particular
same behavior is noticeable as in the previous cases. Tlease in which the focusing components were quadrupoles
figures also show that the shape of the dynamic aperturand sextupoles represented by periodic step function lattices
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of equal periodicity. In this case, the condition of azimuthaling a different fill factor. This would still allow conditions for
symmetry in the transformed frame was satisfied by having @& near integrable system and so one should expect improved
phase difference ofy/=90°, equivalent to a quarter of a lat- confinement by imposing the same.

tice period between the quadrupoles and sextupoles. Single- The derivation of the symmetric transformed Hamiltonian
particle trajectories of particles with angular momentumin this paper is expected to benefit various current and pro-
showed increased chaotic behavior/adecreased from 90° posed applications of nonlinear lattices in particle accelera-
to 0°. The size of the dynamic aperture was estimated bygrs, |t would also add to previous work on increasing the
allowing the particles to drift up to a maximum radial dis- 4ynamic aperture of accelerator lattices in the presence of
tance which allowed a maximum tune shift of about 15%p,qnjinear componentg21]. The Lie transform perturbation

when compared to arbitrarily small _oscillations.'Calculationsmethod presented here is easily applicable to other areas of
_showed that the size of the dynamic aperture increased raPfamiltonian dynamics as well where it is required to per-
idly as ¢ increased from 0° and gradually reached a maxi-

mum asys approached 90°. Results showed that the conditior];Orm a time averaging over certain fast time scales.
was robust enough for possible practical applications.
While the parameters used in the calculations were real-
istic, they were also simplified. This theory remains to be
applied to parameters specific to real machines. For example, One of us(K.S.G) wishes to acknowledge Jim Howard
it would be interesting to apply it in the use of sextupoles forfor many useful suggestions. This work was supported by the
chromaticity corrections in storage rings with their lattice U.S. Department of Energy under Grant No. DE-FGO03-
periods different from that of the quadrupoles and also havO5ER40926.
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